Exercise 2.1.4

(Exact solution of $\dot{x}=\sin x$) As shown in the text, $\dot{x}=\sin x$ has the solution $t=\ln \left|\left(\csc x_{0}+\cot x_{0}\right) /(\csc x+\cot x)\right|$, where $x_{0}=x(0)$ is the initial value of x.
a) Given the specific initial condition $x_{0}=\pi / 4$, show that the solution above can be inverted to obtain

$$
x(t)=2 \tan ^{-1}\left(\frac{e^{t}}{1+\sqrt{2}}\right)
$$

Conclude that $x(t) \rightarrow \pi$ as $t \rightarrow \infty$, as claimed in Section 2.1. (You need to be good with trigonometric identities to solve this problem.)
b) Try to find the analytical solution for $x(t)$, given an arbitrary initial condition x_{0}.

Solution

If $x_{0}=\pi / 4$, then the solution to $\dot{x}=\sin x$ reduces to

$$
\begin{gathered}
t=\ln \left|\frac{\csc \frac{\pi}{4}+\cot \frac{\pi}{4}}{\csc x+\cot x}\right| \\
t=\ln \left|\frac{\sqrt{2}+1}{\frac{1}{\sin x}+\frac{\cos x}{\sin x}}\right| \\
t=\ln \left|\frac{\sqrt{2}+1}{1} \cdot \frac{\sin x}{1+\cos x}\right| \\
t=\ln \left|\frac{\sqrt{2}+1}{1} \cdot \tan \frac{x}{2}\right|
\end{gathered}
$$

Exponentiate both sides.

$$
e^{t}=\left|\frac{\sqrt{2}+1}{1} \cdot \tan \frac{x}{2}\right|
$$

Remove the absolute value sign on the right side by placing \pm on the left side.

$$
\pm e^{t}=\frac{\sqrt{2}+1}{1} \cdot \tan \frac{x}{2}
$$

Solve for x.

$$
\begin{aligned}
\tan \frac{x}{2} & = \pm \frac{e^{t}}{1+\sqrt{2}} \\
\frac{x}{2} & =\tan ^{-1}\left(\pm \frac{e^{t}}{1+\sqrt{2}}\right)+n \pi, \quad n=0, \pm 1, \pm 2, \ldots \\
x(t) & = \pm 2 \tan ^{-1}\left(\frac{e^{t}}{1+\sqrt{2}}\right)+2 n \pi
\end{aligned}
$$

Plugging in $t=0$ results in $\pi / 4$ only if the plus sign is chosen and $n=0$. Therefore,

$$
x(t)=2 \tan ^{-1}\left(\frac{e^{t}}{1+\sqrt{2}}\right) \Rightarrow \lim _{t \rightarrow \infty} x(t)=2 \tan ^{-1}(\infty)=2\left(\frac{\pi}{2}\right)=\pi
$$

Here the aim is to solve the following initial value problem.

$$
\frac{d x}{d t}=\sin x, \quad x(0)=x_{0}
$$

Divide both sides by $\sin x$.

$$
\frac{\frac{d x}{d t}}{\sin x}=1
$$

Rewrite the left side using the chain rule.

$$
\frac{d}{d t} \ln \left|\tan \frac{x}{2}\right|=1
$$

The absolute value sign is included because the logarithm argument cannot be negative. Integrate both sides with respect to t.

$$
\ln \left|\tan \frac{x}{2}\right|=t+C
$$

Apply the initial condition $x(0)=x_{0}$ now to determine C.

$$
\ln \left|\tan \frac{x_{0}}{2}\right|=C
$$

As a result, the previous equation becomes

$$
\ln \left|\tan \frac{x}{2}\right|=t+\ln \left|\tan \frac{x_{0}}{2}\right| .
$$

Bring the two logarithms to the left side and combine them.

$$
\ln \left|\frac{\tan \frac{x}{2}}{\tan \frac{x_{0}}{2}}\right|=t
$$

Exponentiate both sides.

$$
\left|\frac{\tan \frac{x}{2}}{\tan \frac{x_{0}}{2}}\right|=e^{t}
$$

Place \pm on the right side in order to remove the absolute value sign on the left side.

$$
\frac{\tan \frac{x}{2}}{\tan \frac{x_{0}}{2}}= \pm e^{t}
$$

Solve for x.

$$
\begin{aligned}
\tan \frac{x}{2} & =\left(\pm e^{t}\right) \tan \frac{x_{0}}{2} \\
\frac{x}{2} & =\tan ^{-1}\left[\left(\pm e^{t}\right) \tan \frac{x_{0}}{2}\right]+n \pi, \quad n=0, \pm 1, \pm 2, \ldots \\
x(t) & = \pm 2 \tan ^{-1}\left(e^{t} \tan \frac{x_{0}}{2}\right)+2 n \pi
\end{aligned}
$$

Plugging in $t=0$ results in x_{0} only if the plus sign is chosen and $n=0$. Therefore,

$$
x(t)=2 \tan ^{-1}\left(e^{t} \tan \frac{x_{0}}{2}\right) .
$$

